Semantic Segmentation of Human Thigh Quadriceps Muscle in Magnetic Resonance Images

نویسندگان

  • Ezak Ahmad
  • Manu Goyal
  • Jamie S. McPhee
  • Hans Degens
  • Moi Hoon Yap
چکیده

This paper presents an end-to-end solution for MRI thigh quadriceps segmentation. This is the first attempt that deep learning methods are used for the MRI thigh segmentation task. We use the state-of-the-art Fully Convolutional Networks with transfer learning approach for the semantic segmentation of regions of interest in MRI thigh scans. To further improve the performance of the segmentation, we propose a post-processing technique using basic image processing methods. With our proposed method, we have established a new benchmark for MRI thigh quadriceps segmentation with mean Jaccard Similarity Index of 0.9502 and processing time of 0.117 second per image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

Segmentation of Magnetic Resonance Brain Imaging Based on Graph Theory

Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...

متن کامل

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

بررسی شدت نسبی سیگنال تصاویر Magnetic Resonance در بافت رترودیسکال و عضله پتریگوئید خارجی و رابطه آن با یافته‌های Magnetic Resonance Imaging

Background and Aims: Disc displacement is the most common temporomandibular joint disorder and magnetic resonance imaging (MRI) is the gold standard in its diagnosis. This disorder can lead to changes in signal intensity of magnetic resonance (MR). The purpose of this study was evaluation of correlation between relative signal intensity of MR images of retrodiscal tissue, superior and inferior ...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.00415  شماره 

صفحات  -

تاریخ انتشار 2018